skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Berrah, Nora"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Roaming is an unconventional type of molecular reaction where fragments, instead of immediately dissociating, remain weakly bound due to long-range Coulombic interactions. Due to its prevalence and ability to form new molecular compounds, roaming is fundamental to photochemical reactions in small molecules. However, the neutral character of the roaming fragment and its indeterminate trajectory make it difficult to identify experimentally. Here, we introduce an approach to image roaming, utilizing intense, femtosecond IR radiation combined with Coulomb explosion imaging to directly reconstruct the momentum vector of the neutral roaming H2, a precursor to$${{{{{{{{\rm{H}}}}}}}}_{3}}^{+}$$ H 3 + formation, in acetonitrile, CH3CN. This technique provides a kinematically complete picture of the underlying molecular dynamics and yields an unambiguous experimental signature of roaming. We corroborate these findings with quantum chemistry calculations, resolving this unique dissociative process. 
    more » « less
  2. Abstract We have studied the fragmentation of the brominated cyclic hydrocarbons bromocyclo-propane, bromocyclo-butane, and bromocyclo-pentane upon Br(3d) and C(1s) inner-shell ionization using coincidence ion momentum imaging. We observe a substantial yield of CH3+fragments, whose formation requires intramolecular hydrogen (or proton) migration, that increases with molecular size, which contrasts with prior observations of hydrogen migration in linear hydrocarbon molecules. Furthermore, by inspecting the fragment ion momentum correlations of three-body fragmentation channels, we conclude that CHx+fragments (withx = 0, …, 3) with an increasing number of hydrogens are more likely to be produced via sequential fragmentation pathways. Overall trends in the molecular-size-dependence of the experimentally observed kinetic energy releases and fragment kinetic energies are explained with the help of classical Coulomb explosion simulations. 
    more » « less
  3. Upon photoexcitation, molecules can undergo numerous complex processes, such as isomerization and roaming, leading to changes in the molecular and electronic structure. Here, we report on the time-resolved ultrafast nuclear dynamics, initiated by laser ionization, in the two structural isomers, 1- and 2-propanol, using a combination of pump–probe spectroscopy and coincident Coulomb explosion imaging. Our measurements, paired with quantum chemistry calculations, identify the mechanisms for the observed two- and three-body dissociation channels for both isomers. In particular, the fragmentation channel of 2-propanol associated with the loss of CH 3 shows possible evidence of methyl roaming. Moreover, the electronic structure of this roaming methyl fragment could be responsible for the enhanced ionization also observed for this channel. Finally, comparison with similar studies done on ethanol and acetonitrile helps establish a correlation between the length of the alkyl chain and the likelihood of hydrogen migration. 
    more » « less
  4. null (Ed.)
  5. Sub-femtosecond soft x-ray pulses induce coherent superposition of core-excited electronic states in NO probed in real time. 
    more » « less